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Introduction

Quantum computing [6] is a research and
development priority, critical in maintaining 
national security and scientific leadership. 

• Quantum computing promises an astronomical increase in computing 
capabilities, providing super-fast response in calculating the solutions to 
some challenging and even intractable problems.

• However, fast is not real-time; instead, “real-time” means “to be on-
time every time” [8]. Every instance of all computational and physical tasks 
must meet application-specific deadline, delay, periodicity, and other timing 
requirements. Pre-deployment response time analysis is thus required.

• Can quantum computing machines and algorithms satisfy the specified 
timing constraints in real-time applications?
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Introduction

• There exist timing analysis techniques for classical real-time 
systems, but will these hold for real-time quantum computing 
systems running quantum programs? 

• Current research in quantum computing focuses on constructing a 
universal gate set, making qubits initializable and easily readable, 
controlling/avoiding decoherance, and building scalable machines by 
increasing the number of qubits [12].

• However, the timing analysis and verification of quantum 
computing machines and quantum programs has never been 
systematically explored.

• Our project is therefore to pursue answers to determining whether 
a given quantum computing machine (such as the first circuit-
based IBM Q [19]) and quantum programs satisfy the timing 
constraints imposed by a given real-time application.

3



Introduction

4

|0

|0

|0

H

Fig. 1. Quantum Circuit

Quantum circuit: most popular quantum 
computing model. 

Based on the quantum bit qubit, analogous to the
binary bit in classical computing systems. 

Quantum computers and classical computers are equivalent in terms of 
computability since both comply with the Church–Turing Thesis [26]. 

However, quantum algorithms have several-fold lower runtime 
complexities than those of corresponding known classical algorithms 
for important problems including:

cryptography, search, real-time machine learning, computational biology, and 
computer-aided drug design, resulting in “quantum supremacy.”



Introduction

• A challenge to overcome is that quantum computers suffer from 
quantum decoherence and state fidelity, making it difficult to 
maintain qubits’ quantum states. 

• Therefore, quantum computers incur errors resulting in wasted 
execution times. Error correction [16], [27] is needed to isolate 
the system from its environment since interactions with the external 
world result in decoherence.

• This project has several threads of exploration -- one is detailed 
here. 

• We leverage our framework and extensive results in the timing 
analysis and optimization of functional reactive programming 
(FRP) systems developed since 2009 [30]. 
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Introduction

• In FRP systems, a currently running tasks is terminated (and not 
preempted for its execution to resume later at the task’s preempted point) 
when a more urgent task arrives and thus the completed execution 
steps of the former (lower priority) task are wasted.

• The processing time incurred in running these terminated tasks must 
be included in the worst-case response time (WCRT) of the system when 
determining whether it satisfies the specified timing constraints in a given 
real-time application. 

• Leverage the analysis of the FRP model to predict the WCRT of fault-
tolerant classical computing systems since:

• Timing analysis of re-executions for fault recovery plus transient-
faults-induced wasted execution times is similar to determining the 
response time of tasks with terminated and incomplete executions in 
the FRP model. Accounting for wasted execution times due to errors in 
quantum computers can be treated similarly. 
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Elementary Introduction to Quantum 
Computing
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The most popular model of quantum computation 
specifies computation performed on a network of 
quantum logic gates, analogous to logic gates in 
conventional digital circuits.

This model is an abstract linear-algebraic generalization of a classical 
digital circuit and complies with the laws of quantum mechanics.

Quantum programs execute over quantum states, which comprise one or 
more quantum bits (or qubits). 

Using Dirac’s notation, a state denoted as |ψ is called a ket.
The most elementary computing space in quantum computing is formed by a 
set of two orthogonal vectors represented by two kets: |0 and |1 . 



Elementary Introduction to Quantum 
Computing
• A qubit is a normalized linear combination of these two vectors.

• Therefore, while a regular bit in classical computers can only take two values, 0 
or 1, a qubit is a continuum of values in the Bloch sphere of radius 1.

Bloch sphere is a geometrical 
representation of a two-level 
quantum mechanical system’s pure 
state space.

Fig. 2. Classical bit.      Fig. 3. Qubit and Block sphere.

• More precisely, a single qubit is characterized by a vector of complex 
numbers ⟨α, β⟩ such that |α|2 + |β|2 = 1. A complex number is represented by 
p+qi, where p and q are real numbers, and i is the imaginary unit satisfying i2 = -1.

• Vector ⟨1, 0⟩ represents state |0⟩ while the vector ⟨0, 1⟩ represents the state |1⟩. 
In general, any computing space is a tensor product of several qubits.
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Elementary Introduction to Quantum 
Computing

• If the values of both α and β are non-zero, then a qubit is in a 
superposition of |0 and |1 . 

• A qubit is only in superposition until it is measured, when the 
outcome will be 0 with probability |α|2 and 1 with probability |β|2,

• as illustrated by Schrodinger’s cat which is both dead and alive in a 
room until this room is opened. 

• The measurement has the effect of collapsing the state to match 
the measured outcome, i.e., either |0 or |1 ,

• and thus this measurement is not passive. Consequently, all 
measurements afterwards return the same value. 
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Elementary Introduction to Quantum 
Computing

• An operation in any part of a quantum algorithm can execute on one or several of 
the total number of qubits in the quantum computing system. 

• There are two basic types of quantum operations: (1) reversible operations with 
unitary operators, and (2) irreversible operations called “measurements” or 
“observations,” which are projections onto Eigen-vectors of the observation 
operator.

• In operation (2), the module of the projection onto the observation space 
specifies the probability to observe a given state (|0⟩ or |1⟩ for a single qubit). 

• An Eigen-vector of the operator will be the subsequently updated state.

• Therefore, observation is not a linear operation in the general case, though it 
can be linear in specific configurations or when the normalization factor is unused. 

• The dimension of the computing space in the case of several qubits is the 
tensor product of the spaces, so it is exponentially larger than the Cartesian 
product in the current approach, but the Cartesian product can be seen as a 
subset of the tensor product. 
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Elementary Introduction to Quantum 
Computing – Quantum Decoherence

• Quantum computers suffer from quantum decoherence, or loss of 
quantum coherence, which must be controlled or eliminated for 
computing to be valid. 

• The system is coherent if there exists a definite phase relation 
between different states, necessary to perform quantum computing on 
quantum information encoded in quantum states. 

• Since interactions with the external world cause the quantum computing 
system to decohere, isolating the system from its environment is 
required. 

• The quantum gates and the background thermonuclear spin and lattice 
vibrations of the physical mechanism for implementing the qubits are 
also sources of decoherence. 

• Since decoherence is effectively non-unitary, it is irreversible, and 
thus it should be highly controlled if it cannot be avoided.

11



Elementary Introduction to Quantum 
Computing – Quantum Decoherence

• Decoherence times vary from nanoseconds to seconds at low temperature 
[11], [35]. 

• Cooling the qubits to 20 millikelvin can avoid significant decoherence [20]. 
Thus, long tasks may render some quantum programs inoperable since 
keeping the state of qubits for a sufficiently long interval will eventually 
corrupt the superpositions [1]. 

• Response time analysis is therefore required to account for 
decoherence and error recovery times in order to provide real-time 
performance guarantees. 

• If the error rate is sufficiently low, quantum error correction can be 
used to eliminate errors and decoherence according to the quantum 
threshold theorem [26]. 

• Thus, the overall computation time can be longer than the decoherence time 
if an error correction scheme can be implemented to recover from 
errors at a faster rate than the error rate caused by decoherence. 

12



Preliminaries of Functional 
Reactive Programming (FRP)

• Systems that react to the environment being monitored and controlled in a
timely fashion using functional reactive programming (FRP) are known as
Functional Reactive Systems (FRS).

• These systems can range from small devices (which are not a CPS) to distributed
and complex components (a CPS).

• FRP is a style of functional programming where programs are inherently stateful,
but automatically react to changes in state.

• Therefore, the program remains an algebraic description of system state, with the
task of keeping the stated (unidirectional) relationships in sync left to the language.

• FRP allows intuitive specification and formal verification of safety-critical
behaviors, thus reducing the number of defects during the design phase, and the
stateless nature of execution avoids the need for complex programming
involving synchronization primitives.

• More resistant to faults since there are no intermediate states. FRP-programmed
components are mathematical functions which can be composed more easily.
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Motivation for FRP

14

Pathfinder mission to Mars: best known Priority Inversion problem.
Failure to turn on priority Inheritance (PI) - Most PI schemes complicate and slow down 

the locking code, and often are used to compensate for poor application designs.
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html



Functional Reactive Programming

• Priority-based Functional Reactive Programming (P-FRP)

• P-FRP provides real-time guarantees using static priority assignment

• Higher-priority tasks preempt lower-priority ones; preempted tasks are aborted

• Multi-version commit model of execution

• Atomic execution – “all or nothing” proposition

• Execution different from ‘standard’ models

Other Examples of Functional Programming (FP) Languages: 

• Haskell

• Atom - Domain Specific Language in Haskell

• Erlang - Developed at Ericsson for programming telecommunication equipment

• Esterel - Designed for reactive programming

• F# - Developed by Microsoft; available as a commercial platform

15



Functional Reactive Programming (FRP)
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•Type-safe programming

•Discrete and Continuous aspects

•Transactional model prevents priority inversion

•Synchronization primitives not required

•Ideal for parallel execution

Basic Abstractions

•FRP divides inputs into two basic classes:

– Behaviors or signals: Functions of time.

– Events: Temporal sequences of discrete values.

•An FRP language must include a means of altering or replacing a program 
based on event occurrences - this is the basis of FRP's reactivity.

•These abstractions may be reified in an FRP language or may form the basis of 
other abstractions, but they must be present.



Priority-based FRP (P-FRP)

• In P-FRP, the scheduling model is called Abort-and-Restart (ANR)

– Copy and restore operations

• To allow for correct restarting of handlers, compilation is
extended to generate statements that store variables modified in
an event handler into fresh temporary (or scratch) variables in
the beginning of the handler while interrupts are turned off, and
to restore variables from the temporary variables at the end of
the handler while interrupts are turned off.
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Priority-based FRP (P-FRP)
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The Abort-and-Restart  (ANR) Scheduling Model
The idea of the ANR model is that a lower-priority task is aborted
when a higher priority task arrives into the system. Once the
higher-priority task is done, the lower priority task restarts as new.



Priority-based FRP (P-FRP)
Example: Wasted execution times
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Priority-based FRP (P-FRP)
Example

Example: Automobile Anti-Lock Braking (ABS) Controller
– Activities of an ABS control system 

1. C = worst case execution time

2. T = (sampling) period   = D (deadline)

– (A) Car speed measurement: C= 1 ms, T= 5 ms

– (B) Wheel speed measurement: C= 2 ms,T=8 ms

– (C) Analysis and computation task : C= 3 ms,T=20 ms

– (D) Brakes (Abort (release) /Retry (pressure)) : C= 1 ms,T=25 ms

Kaleb R. Christoffersen and Albert M. K. Cheng, Model-Based Design: Anti-lock Brake 
System with Priority-Based Functional Reactive Programming, RTSS WIP 2013.
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Priority-based FRP (P-FRP)
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Priority-based FRP (P-FRP)
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Priority-based FRP (P-FRP)

• Advantages of Abort-and-Restart (ANR)  

– A simpler programming model

– Tasks execute atomically so no task is blocked by another task

• The priority inversion problem is removed

• No overheads caused by priority inheritance

• Closer adherence to priority scheduling

• The worst-case response time of a task is the length of the longest interval 
from a release of that task till its completion.

• With ANR, interference from higher-priority tasks induces both an 
interference cost and an abort cost on the response time of the preempted 
lower-priority task.

• We have developed a comprehensive framework for response time 
analysis since 2009. Initial analysis abstracts memory and I/O access 
times. Recent work accounts for precise memory and I/O access times.
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Response Time Analysis of
Priority-based FRP (P-FRP)

• Response time analysis is an exact schedulability test to calculate the
worst-case response time of a task which includes the time of
interference from other higher priority tasks and blocking from lower
priority tasks.

• RTA is not exact unless blocking is exact - which it is not. If the worst-
case response time of a task is longer than its deadline (D), it means the
task will not meet its deadline. The opposite situation is that if the worst-
case response time of the task is less than or equal to its deadline, the
task will meet its deadline.

• The analysis can be applied for D = T (task’s period), D < T, or D > T.
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Priority-based FRP (P-FRP)

Response time Analysis for ANR

•For the highest-priority task, its worst response time will be equal to its own

computation time, that is R = C.

• If task j has the highest arrival rate, then the execution time of a task i
cannot exceed Tj − Cj or task i will suffer interference (I) and aborts

(α). So for a general task i :

Ri = Ci + Ii + αi
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Priority-based FRP  (P-FRP)

Interference Cost

•If the execution time of some task i exceeds Tj − Cj, then task
i will never be able to complete execution.

•A simple expression for obtaining this Interference Cost is
using the ceiling function:
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Priority-based FRP  (P-FRP)

Maximum Interference

•Each task of higher-priority is interfering with task i, and so:

•This gives us the following equation:
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Priority-based FRP  (P-FRP)

Maximum Abort Costs

•Each higher-priority task is interfering with task i, so the
maximum Abort Costs are as follows:

•Ck is the maximum execution time between i and the highest-
priority task.
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Priority-based FRP (P-FRP)

Maximum Abort Costs

•The maximum abort cost equation is sensible and simple but 
overly pessimistic. Therefore, the test is said to be sufficient
but not necessary.
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Priority-based FRP (P-FRP)

• Abort-and-Restart with a limit on the number of aborts

30



Response Time Analysis of
Priority-based FRP (P-FRP)
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- On-line Schedulability Test returns the gap (the amount of execution time
available) for the next lower-priority task.
- Precise (tight) timing characterization of the embedded controller software
execution leads to faster physical system response compared with one designed
without accurate controller timing analysis (and thus requires more tolerance of
execution time variations).



Response Time Analysis of 
Quantum Computing Systems

• There is limited work in one direction: using quantum computing 
or formalism inspired by quantum computing [24] to determine 
the Worst-Case Execution time (WCET) of computer programs 
running on non-quantum computers accounting for cache and 
task preemptions while avoiding the underlying NP-hard analysis 
problems. 

• However, we are not aware of work in the other direction: leveraging 
the timing analysis of functional reactive systems to model and 
determine the Worst-Case Response Time (WCRT) of quantum 
programs running on quantum computers. 

• There is work such as a fully verified optimizer for quantum 
circuits, written with the Coq proof assistant [18], but it does 
not consider timing constraints.
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Response Time Analysis of 
Quantum Computing Systems

• With appropriate transformations, the behavior of quantum 
programs resembles that of P-FRP programs and thus a 
corresponding P-FRP analysis strategy [39] can be applied.

• As in [24], we model any interaction of the computing space with the 
hardware component as a Finite State Machine (FSM). 

• We next associate a component of the vector state with each state of 
the FSM and then use simple transition matrices to represent 
operations for transitioning from one state to another. 

• The linear operation is a matrix product with a state vector. 

• Since a simple matrix product is used to update the states, the 
framework can be considered as a Markov chain [4], [25], which 
is also deterministic for a deterministic FSM.
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Response Time Analysis of 
Quantum Computing Systems

• Optional elements of the state space can keep track of the relevant 
parts of the state history such as the number of hits and misses in the 
cache, which is the memory component contributing to the 
exponential-time complexity of response time analysis of non-quantum 
programs. 

• It is updated by the state vector before state update. Using Dirac’s notation, 
|x denotes the state vector associated with state x and |h denotes the 
history state vector. 

• Then an update of state vectors is expressed as follows: |h’ = |h + P|x and 
|x’ = O|x , where following the update, primed state vectors become state 
vectors, P is typically a projector for the state’s interesting parts for the 
history state vector, and O is the state-transition matrix. 

• Since our approach is to utilize efficient FRP-based timing analysis [39] 
to determine the WCRT of quantum programs, we perform the inverse 
of the above steps and then apply our P-FRP analysis strategy [39].
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Response Time Analysis of 
Quantum Computing Systems

35

• Our approach to account for quantum decoherence times is motivated by the 
observation that the quantum decoherence times can be modeled as wasted 
execution times due to task termination resulting from the arrival of higher-
priority tasks in P-FRP. 

• We first leverage the existing work on analyzing P-FRP programs to predict 
their WCRT of fault-tolerant classical computing systems [9], [22], [33], [34]

• since the timing analysis of re-executions for fault recovery plus transient-
faults-induced wasted execution times is similar to determining the response 
time of tasks with terminated and incomplete executions in the P-FRP model.



Response Time Analysis of 
Quantum Computing Systems

• These studies assume that faults occur at a Poisson rate. 

• We need to determine the occurrence rate for quantum decoherence in a 
given quantum computer based on its characteristics. 

• We then show that accounting for wasted execution times due to errors 
and recovery schemes in quantum computers resulting from quantum 
decoherence and state fidelity can be treated as faults in non-quantum 
computers. 

• Ongoing work is developing a mapping between occurrences of 
decoherence and arrivals of higher-priority tasks in P-FRP so that the 
polynomial-time approximate timing analysis method [39] can be applied.

• More details in: Albert M. K. Cheng, “Response Time Analysis of Real-
Time Quantum Computing Systems,” 29th IEEE Real-Time and Embedded 
Technology and Applications Symposium (RTAS) BP, CPS-IoT Week, San 
Antonio, Texas USA, May 9-12, 2023.

* Supported in part by UH GEAR and Equipment Grants (Nos. 67250 and 68121).
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Hybrid Quantum-Classical 
Computing

• Current quantum computing hardware is noisy due to decoherence and can 
only store information for a short period of time.

• Limited to small number of qubits which are planar-connected.

• Practical applications of quantum computing require higher connectivity and 
far more qubits than current quantum processing units (QPUs) can provide. 

• One way to make quantum computing practical in the near term is to 
connect the QPUs using classical computer networks which has not been 
systematically investigated. 

37
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Hybrid Quantum-Classical 
Computing
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• Networked quantum processors require classical control signals to be 
exchanged within microseconds, aligned with qubit coherence times, to 
facilitate distributed operations.

• We introduce an adaptive scheduling framework that adjusts task decisions 
at runtime based on execution-time variations changes while maintaining 
provable WCRT guarantees for quantum and classical hardware.
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Katikaneni, Comyar Dehlavi, Ruiyang Huang

• Scholar: Javier Mendez (Colombian Air Force)

• Recent graduates and their positions: Yuanfeng Wen 
(MS, Microsoft, then Meta), Zeinab Kazemi (Cisco, then 
Microsoft), Daxiao Liu (Uber), Chaitanya Belwal (PhD, 
Halliburton; Visiting Assistant  Prof., UHCL), Jim Ras
(PhD), Jian Lin (PhD, Associate Professor, UHCL), Yu 
Li (PhD, Faculty, Virginia Tech), Behnaz Sanati (PhD, 
Mbm), Xingliang Zou (PhD, Indeed), Carlos Rincon 
(PhD, UH), Guangli Dai (PhD, Meta), Pavan Paluri
(PhD, AMD) 

Fall 2022 (9/16) 

group meeting 

45

Yu Li (Best Junior PhD Student 
Awardee, Best PhD Student 
Awardee, and Friends of NSM 
Graduate Fellow) and Prof. 
Albert Cheng visit the NSF-
sponsored Arecibo Observatory 
after their presentation at the 
flagship RTSS 2012 in Puerto 
Rico.

Real-time systems research 
group at Yuanfeng Wen’s 
graduation party in May 2013.
Yuanfeng is now at Facebook.

Fall 2016 (8/22) group meeting 
– l to r: Guillermo Rodriguez, 
Zhenggang Li, Tiffany Ang, 
Wenhui Chu, Pavani Tenneti, 
Carlos Rincon, Brandon Knape, 
Prof. Albert Cheng, Binh Doan, 
Nancy Lam, Yating Hou, 
Xingliang Zou, Elizabeth Pham. 
Not present: Yu Li (internship), 
Behnaz Sanati, Nick Troutman.


