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The Elephant in The Room

▪ Let’s accept the reality: In many systems WCETs are unknown

▪ They’re the same ones we use to motivate most of today’s research on real-time systems

▪ Response-time bounds cannot be trusted

▪ There’s a major source of uncertainty in our models

Design for uncertainty

• What’s the best configuration to maximize robustness in the face of uncertainty?

• How to make a system as resilient as possible given uncertainty?

• How risky is a system under uncertainty?
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Modeling Uncertainty

▪ Honestly, I still don’t have a strong opinion ☺

▪ A measure of uncertainty in [0, 1] for each execution time bound?

▪ Pragmatic observations:

▪ Execution time estimates can be obtained by measurements (nominal exec. times)

▪ Code complexity affects uncertainty

▪ More branching → more uncertainty (e.g., consider branch prediction)

▪ More paths → unpredictable cache hit/miss patterns → more uncertainty

▪ Memory access affects uncertainty

▪ More memory accesses → more opportunity for contention → more uncertainty

▪ Coverage affects uncertainty

▪ Less coverage during measurements → more uncertainty
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Motivating Example

For example, consider this simple limited-preemptive taskset:

Task Period NET

𝜏1 50 <12>

𝜏2 80 <30>

𝜏3 200 <26,25,10>

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time 
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.

From Matteo Zini’s presentation @ RTSS 2024
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Motivating Example

We add 1 unit of exceedance to the second job of task 𝜏1 

Task Period NET

𝜏1 50 <12>

𝜏2 80 <30>

𝜏3 200 <26,25,10>

𝜏3's response time increased by 1 time unit

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time 
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.
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Motivating Example

We add 1 unit of exceedance to the first job of task 𝜏2 and 𝜏3  

Task Period NET

𝜏1 50 <12>

𝜏2 80 <30>

𝜏3 200 <26,25,10>

𝜏3's response time increased by 45 time units!

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time 
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.
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Response-Time Nonlinearities

The consequences of NET exceedance are not easy to predict:

▪ NET + 1                    Response time + 1

▪ NET + 2                    Response time + 2

▪ NET + 3                    Response time + 45

▪ …

Nonlinear increase! 

If we neglect this phenomenon, we 
might over-estimate the system's 

temporal safety margin

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time 
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.
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Response-Time Discontinuities

Response-time discontinuities are not trivial to predict

Total exceedance e

𝜏 3
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im

eTask Period NET

𝜏1 50 <12>

𝜏2 80 <10, 20>

𝜏3 200 <26,25,10>

3 11 39

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time 
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.
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Risk Factor

𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)

▪ When a system experiences exceedance, the best it can happen is a linear, 

unitary-slope increase in response times

▪ Risk is determined by discontinuous increases of response times (jumps)

▪ Hence 𝑹𝒊 𝒆 − 𝒆 determines risk

normalized to nominal
response time

(no exceedance) 
1

exceedance (e)

which one is riskier?
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Risk Factor

𝛾𝑖 𝑒𝑀𝐴𝑋 = න
0

𝑒𝑀𝐴𝑋
𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)
− 1 𝑑𝑒

1

exceedance (e)
𝑒𝑀𝐴𝑋

𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)
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Risk Factor

𝛾𝑖 𝑒𝑀𝐴𝑋 = න
0

𝑒𝑀𝐴𝑋
𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)
− 1 𝑑𝑒

1

exceedance (e)
𝑒𝑀𝐴𝑋

𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)

▪ Informal interpretation of risk factor 𝜸𝒊 𝒆𝑴𝑨𝑿

▪ It captures “how much” exceedance introduces large discontinuous increases

▪ It captures “how quickly” response times jump with exceedance

▪ This definition depends on the maximum expected exceedance 𝑒𝑀𝐴𝑋

▪ Ouch…yet another parameter?
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Minimizing Risk Factor

▪ Challenge: Design real-time systems to minimize risk factor

▪ Either for a selection of tasks or all tasks

▪ Weighting risk factor by a trustworthiness/uncertainty level of execution times

▪ Considering arbitrary maximum expected exceedance

▪ It’s an optimization problem

Examples:

• Partition tasks on multicores according to risk

• Find task periods that minimize risk while securing control performance

• Configure locking protocols to minimize risk

• Configure Logical Execution Time (LET) intervals according to risk

• …

Subject to classical schedulability under nominal execution times
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Example: Task Partitioning (1)

▪ Place tasks to cores to minimize risk factor

▪ E.g., for a target, relevant task

▪ Partitioned fixed-priority scheduling of Liu&Layland tasks

▪ Even with a simple scheduler and task model, decisions are not obvious

C=743, T=1000

C=43, T=4000

C=230, T=5000

C=800, T=5000

C=1960, T=6000

C=1710, T=8000

Core 0
utilization 80%

Core 1
utilization 70%

C=500, T=10000
??

Higher risk in less 
loaded core
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Example: Task Partitioning (2)

C=54, T=1000

C=1884, T=3000

C=943, T=8000

C=93, T=1000

C=660, T=2000

C=831, T=3000

Core 0
utilization 80%

Core 1
utilization 70%

C=500, T=10000
??

Lower risk in more 
loaded core with larger 
nominal response ime



16

Achieving Resiliency

▪ Reservation servers work great to isolate the effects of exceedance

▪ It’s a way to control uncertainty 

extended response time

extended response time

time time

exceedance exceedance

▪ Can we design ad adaptive reservation mechanism that minimizes the risk factor?

▪ Budget reclaiming is very effective (since early 2000’s)

Task 1

Task 2

Task 1

Task 2

There’s space for new reservation algorithms that, jointly applied with budget reclaiming, 
limit response-time discontinuities and hence the risk factor

(without reservation) (with reservation)



Thank you!
Alessandro Biondi

alessandro.biondi@santannapisa.it
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