
Mastering Uncertainty:
Optimizing Real-Time Systems
for Robustness and Resilience

Alessandro Biondi

Scuola Superiore Sant’Anna, Pisa, Italy

2

Design & Test Loop

decisions can
be wrong

System

lots of uncertainty in
extracting parameters

Model

analysis results are
affected by
uncertainty

Analysis Methods

tests and optimizations
are not reliable

Test and Optimization

Algorithms

3

The Elephant in The Room

▪ Let’s accept the reality: In many systems WCETs are unknown

▪ They’re the same ones we use to motivate most of today’s research on real-time systems

▪ Response-time bounds cannot be trusted

▪ There’s a major source of uncertainty in our models

Design for uncertainty

• What’s the best configuration to maximize robustness in the face of uncertainty?

• How to make a system as resilient as possible given uncertainty?

• How risky is a system under uncertainty?

4

Modeling Uncertainty

▪ Honestly, I still don’t have a strong opinion ☺

▪ A measure of uncertainty in [0, 1] for each execution time bound?

▪ Pragmatic observations:

▪ Execution time estimates can be obtained by measurements (nominal exec. times)

▪ Code complexity affects uncertainty

▪ More branching → more uncertainty (e.g., consider branch prediction)

▪ More paths → unpredictable cache hit/miss patterns → more uncertainty

▪ Memory access affects uncertainty

▪ More memory accesses → more opportunity for contention → more uncertainty

▪ Coverage affects uncertainty

▪ Less coverage during measurements → more uncertainty

5

Motivating Example

For example, consider this simple limited-preemptive taskset:

Task Period NET

𝜏1 50 <12>

𝜏2 80 <30>

𝜏3 200 <26,25,10>

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.

From Matteo Zini’s presentation @ RTSS 2024

6

Motivating Example

We add 1 unit of exceedance to the second job of task 𝜏1

Task Period NET

𝜏1 50 <12>

𝜏2 80 <30>

𝜏3 200 <26,25,10>

𝜏3's response time increased by 1 time unit

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.

7

Motivating Example

We add 1 unit of exceedance to the first job of task 𝜏2 and 𝜏3

Task Period NET

𝜏1 50 <12>

𝜏2 80 <30>

𝜏3 200 <26,25,10>

𝜏3's response time increased by 45 time units!

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.

8

Response-Time Nonlinearities

The consequences of NET exceedance are not easy to predict:

▪ NET + 1 Response time + 1

▪ NET + 2 Response time + 2

▪ NET + 3 Response time + 45

▪ …

Nonlinear increase!

If we neglect this phenomenon, we
might over-estimate the system's

temporal safety margin

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.

9

Response-Time Discontinuities

Response-time discontinuities are not trivial to predict

Total exceedance e

𝜏 3
's

 r
es

p
o

n
se

 t
im

eTask Period NET

𝜏1 50 <12>

𝜏2 80 <10, 20>

𝜏3 200 <26,25,10>

3 11 39

From Matteo Zini’s presentation @ RTSS 2024

M. Zini, F. Marković, D. Casini, A. Biondi, and B. Brandenburg, “In Search of Butterflies: Exceedance Analysis for Real-Time
Systems under Transient Overload”, Proceedings of the 45th IEEE Real-Time Systems Symposium (RTSS 2024), pp. 229–242, December 2024.

10

Risk Factor

𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)

▪ When a system experiences exceedance, the best it can happen is a linear,

unitary-slope increase in response times

▪ Risk is determined by discontinuous increases of response times (jumps)

▪ Hence 𝑹𝒊 𝒆 − 𝒆 determines risk

normalized to nominal
response time

(no exceedance)
1

exceedance (e)

which one is riskier?

11

Risk Factor

𝛾𝑖 𝑒𝑀𝐴𝑋 = න
0

𝑒𝑀𝐴𝑋
𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)
− 1 𝑑𝑒

1

exceedance (e)
𝑒𝑀𝐴𝑋

𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)

12

Risk Factor

𝛾𝑖 𝑒𝑀𝐴𝑋 = න
0

𝑒𝑀𝐴𝑋
𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)
− 1 𝑑𝑒

1

exceedance (e)
𝑒𝑀𝐴𝑋

𝑅𝑖 𝑒 − 𝑒

𝑅𝑖(0)

▪ Informal interpretation of risk factor 𝜸𝒊 𝒆𝑴𝑨𝑿

▪ It captures “how much” exceedance introduces large discontinuous increases

▪ It captures “how quickly” response times jump with exceedance

▪ This definition depends on the maximum expected exceedance 𝑒𝑀𝐴𝑋

▪ Ouch…yet another parameter?

13

Minimizing Risk Factor

▪ Challenge: Design real-time systems to minimize risk factor

▪ Either for a selection of tasks or all tasks

▪ Weighting risk factor by a trustworthiness/uncertainty level of execution times

▪ Considering arbitrary maximum expected exceedance

▪ It’s an optimization problem

Examples:

• Partition tasks on multicores according to risk

• Find task periods that minimize risk while securing control performance

• Configure locking protocols to minimize risk

• Configure Logical Execution Time (LET) intervals according to risk

• …

Subject to classical schedulability under nominal execution times

14

Example: Task Partitioning (1)

▪ Place tasks to cores to minimize risk factor

▪ E.g., for a target, relevant task

▪ Partitioned fixed-priority scheduling of Liu&Layland tasks

▪ Even with a simple scheduler and task model, decisions are not obvious

C=743, T=1000

C=43, T=4000

C=230, T=5000

C=800, T=5000

C=1960, T=6000

C=1710, T=8000

Core 0
utilization 80%

Core 1
utilization 70%

C=500, T=10000
??

Higher risk in less
loaded core

15

Example: Task Partitioning (2)

C=54, T=1000

C=1884, T=3000

C=943, T=8000

C=93, T=1000

C=660, T=2000

C=831, T=3000

Core 0
utilization 80%

Core 1
utilization 70%

C=500, T=10000
??

Lower risk in more
loaded core with larger
nominal response ime

16

Achieving Resiliency

▪ Reservation servers work great to isolate the effects of exceedance

▪ It’s a way to control uncertainty

extended response time

extended response time

time time

exceedance exceedance

▪ Can we design ad adaptive reservation mechanism that minimizes the risk factor?

▪ Budget reclaiming is very effective (since early 2000’s)

Task 1

Task 2

Task 1

Task 2

There’s space for new reservation algorithms that, jointly applied with budget reclaiming,
limit response-time discontinuities and hence the risk factor

(without reservation) (with reservation)

Thank you!
Alessandro Biondi

alessandro.biondi@santannapisa.it

	Slide 1: Mastering Uncertainty: Optimizing Real-Time Systems for Robustness and Resilience
	Slide 2: Design & Test Loop
	Slide 3: The Elephant in The Room
	Slide 4: Modeling Uncertainty
	Slide 5: Motivating Example
	Slide 6: Motivating Example
	Slide 7: Motivating Example
	Slide 8
	Slide 9: Response-Time Discontinuities
	Slide 10: Risk Factor
	Slide 11: Risk Factor
	Slide 12: Risk Factor
	Slide 13: Minimizing Risk Factor
	Slide 14: Example: Task Partitioning (1)
	Slide 15: Example: Task Partitioning (2)
	Slide 16: Achieving Resiliency
	Slide 17

