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Reinforcement Learning (RL)
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Reinforcement Learning (RL) Tm

Markov Decision Process (MDP): * State Space S
L * Action Space A
M =15, A, Pr~; i )
+ State Transition Probability P : S x A — A(S)
Reward Function r:SxA—-R
Discount Factor v € [0,1]

Policy: G = 77(3) Deterministic oOr a ~~ 7T(° | S) Stochastic
Objective of Reinforcement Learning

J(m) =E, i’ytr(st, at)] T = arg max J(ﬂ')
t=0 4

£ : expected total reward over trajectories generated by the policy



Q(s,a) Action-Value function and V(s) Value function  TLTI

Action-Value Function:

Q7 (5,0) = Ex | S Ar(s0,a0) |50 = 5,00 = 0

| t=0

Value Function: Vw(s) = 43aN7T(.|3)[Q7T(S, a)]

= how good on average a state S is under policy 1?



Q-iteration with tabular Q-function

Bellman Optimality Equation for Action-Value Function:

= Q*(s, a) can be iteratively computed

a

Vs,Va Q*(s,a) =r(s,a)+ ’}/ZP(S/ | 5,a) max Q*(s', a’)

S1

S2

S3

Sy

Grid World

Actions

aq

ay

as

S

Ay

Q(s1,aq)

Q(s1,az)

Q(s1,a3)

Q(s1,a4)

Q(SZI a; )

Q(SZ; a )

Q(s2,a3)

Q(s2,04)

Q(s3 a1)

0 (s3,a;)

Q(s3 as3)

Q(s3,a4)

Q(ss aq)

Q(s4 az)

Q(s4 a3)

Q(sy as)

Q Table

Problems:

« curse of dimensionality

« state transition probability is often unknown
(model free RL)

Solutions:

« Approximate Q-table with deep neural net.

* Use Q-learning or policy gradient algorithms
6



Proximal Policy Optimization (PPO) TUT

@ Actor Network with parameters 6

> a=argmaxmg(a|s)
a

 PPO uses an approximation of the Value function to “guide” its learning process
« PPO’s actor relies on “specialized clipping” in its objective for more stable learning
» Critic is trained by using supervised regression with L, norm



DRL applied to RT Resource Management: Tum
DAG scheduling problem

D=3 DAG scheduling problem consists of
@\ scheduling nodes on M processors such that
@ all the nodes can finish before a deadline D

Typical solution: list scheduling (i.e., work-
U6 conserving algorithm based on priorities)




Trivial Schedulability Tm

(%) @\ A DAG task (G, D) is trivially schedulable on M
@\ Ys @ processors if it satisfies the following two conditions:
U3

Ok 116) < D
@/ 2) W(G) <M



Trivial Schedulability
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A DAG task (G, D) is trivially schedulable on M
processors if it satisfies the following two conditions:

)LG) <D
2) W(G) < M

10



Trivial Schedulability Tm

vs @ Is this DAG task also schedulable
@/ on 2 processors?

A DAG task (G, D) is trivially schedulable on M
processors if it satisfies the following two conditions:
1)LG) <D
2) W(G) <M




Trivial Schedulability Tm

D =28
@\@ s this DAG task also schedulable
on 2 processors?
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v A DAG task (G, D) is trivially schedulable on M

processors if it satisfies the following two conditions:
1)LG) <D
2) W(G) <M




Trivial Schedulability
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A DAG task (G, D) is trivially schedulable on M
processors if it satisfies the following two conditions:

1)LG) <D
2) W(G) <M
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Edge Generation Scheduling (EGS) TUT

« The goal of this work is to learn an EGS policy that can be effective at solving the
following optimization problem:

Optimization Problem

minimize W(G"
G'2pG
subject to  L(G') < D

The policy will add edges to the original DAG until no edges can be added
without violating deadline D or current DAG width reaches its lower bound



Edge Generation Scheduling Tm

ﬁdge Generation Scheduling (EGSN

DAG Task
to be scheduled K —>  EGS Agent ‘ / trivially schedulable

| \ DAG Task

on 2 processors on 2 processors

To minimize number of cores needed by the DAG, we use following Reward function:

R(st,a:) = W(G:) — W(Giq1)
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DRL with Proximal Policy Optimization (PPO)
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Evaluation Results

Sun B, Theile M, Qin Z, Bernardini D, Roy D, Bastoni A, Caccamo M. Edge
Generation Scheduling for DAG Tasks using Deep Reinforcement Learning.
IEEE Transactions on Computers. 2024

Acceptance ratio on eight processors: __
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Example of Future Research Tm

Example: DNN Pipelining on Hardware Accelerators*

Input: An original neural network Output: A partitioned neural network

[ DRL Agent ] —)

I DRL Training

*B Sun, B Zou, Y Hu, T Kloda, L Wang, T Abdelzaher, M E

Caccamo, "SAPar: A Surrogate-Assisted DNN Partitioner for Performance Profiler
Efficient Inferences on Edge TPU Pipelines”, in EMSOFT, 2025. (latency, throughput, etc.) Edge TPU Accelerator Pipeline
= Reward generation
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Conclusions TUTI

 RL is a framework for sequential decision-making in which an agent interacts with the
environment to maximize its expected cumulative reward.

« Unlike imitation learning, RL does not depend on expert demonstrations. In fact, RL
enables autonomous policy discovery through trial and error.

« We are exploring the potential of DRL applied to real-time resource management

= DRL does not guarantee globally optimal solutions but instead it produces learned heuristics

 DRL has some limitations too:
» It lacks formal guarantees (however, DAG RT constraints are enforced through “action masking’)
» It demands problem-specific MDP design

» It can incur high training costs, especially when real hardware interaction is needed.
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