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• Background: Deep Reinforcement Learning (DRL)

• DRL applied to Real-Time Resource Management

Ø DAG scheduling problem

Ø Edge Generation Scheduling

Ø DRL architecture with PPO

Ø Evaluation Results

• Future Research

• Conclusions



Agent – Environment Interaction
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<latexit sha1_base64="4RyFWtXOj/5+tDIBxtI005C9W4c=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSLUS0lEqseiF48V7Ac0sWw2m3bpZhN2N0oJ/R9ePCji1f/izX/jps1BWx8MPN6bYWaen3CmtG1/Wyura+sbm6Wt8vbO7t5+5eCwo+JUEtomMY9lz8eKciZoWzPNaS+RFEc+p11/fJP73UcqFYvFvZ4k1IvwULCQEayN9OAmrIaRG7EAqbPyoFK16/YMaJk4BalCgdag8uUGMUkjKjThWKm+Yyfay7DUjHA6LbupogkmYzykfUMFjqjystnVU3RqlACFsTQlNJqpvycyHCk1iXzTGWE9UoteLv7n9VMdXnkZE0mqqSDzRWHKkY5RHgEKmKRE84khmEhmbkVkhCUm2gSVh+AsvrxMOud1p1Fv3F1Um9dFHCU4hhOogQOX0IRbaEEbCEh4hld4s56sF+vd+pi3rljFzBH8gfX5A5sBkUs=</latexit>

⇡(a | s)

<latexit sha1_base64="seHr22W9wgx4F2HIx+USZQdIUf0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD3ju9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs2LiletVO8vy7WbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AG6F41z</latexit>

t+ 1
<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t
<latexit sha1_base64="jaNK1XXvoPrxEnjE+gVjP8Nc4t4=">AAACBXicbVBNS8MwGE7n15xfVY96CA5hooxWZHocevE4wX3AVkqapltYmpYkFUbpxYt/xYsHRbz6H7z5b0y3HnTzgZAnz/O+vHkfL2ZUKsv6NkpLyyura+X1ysbm1vaOubvXkVEiMGnjiEWi5yFJGOWkrahipBcLgkKPka43vsn97gMRkkb8Xk1i4oRoyGlAMVJacs3DVk26qTq1MzgIqQ/zR3YGUX6duGbVqltTwEViF6QKCrRc82vgRzgJCVeYISn7thUrJ0VCUcxIVhkkksQIj9GQ9DXlKCTSSadbZPBYKz4MIqEPV3Cq/u5IUSjlJPR0ZYjUSM57ufif109UcOWklMeJIhzPBgUJgyqCeSTQp4JgxSaaICyo/ivEIyQQVjq4ig7Bnl95kXTO63aj3ri7qDavizjK4AAcgRqwwSVoglvQAm2AwSN4Bq/gzXgyXox342NWWjKKnn3wB8bnD+fZl5U=</latexit>

P (st+1 | st, at)

Environment

Agent

Reinforcement Learning (RL)

action
at

state
st+1

reward
r(st, at)



Markov Decision Process (MDP):
<latexit sha1_base64="4qtTGlMLV+/NvbbzsXAGJFC5RwU=">AAACIXicbVDLSgMxFM3UV62vqks3wSK4KGVGpHYjVN24ESraB3RKuZOmbWgyMyQZoQzzK278FTcuFOlO/BnTBz5aDwTOOfdecu/xQs6Utu0PK7W0vLK6ll7PbGxube9kd/dqKogkoVUS8EA2PFCUM59WNdOcNkJJQXic1r3B1bhef6BSscC/18OQtgT0fNZlBLSx2tmSK0D3CfD4JsHnboy/9V2S/xEXRlTyWBqrB0KAm7SzObtgT4AXiTMjOTRDpZ0duZ2ARIL6mnBQqunYoW7FIDUjnCYZN1I0BDKAHm0a6oOgqhVPLkzwkXE6uBtI83yNJ+7viRiEUkPhmc7xymq+Njb/qzUj3S21YuaHkaY+mX7UjTjWAR7HhTtMUqL50BAgkpldMemDBKJNqBkTgjN/8iKpnRScYqF4e5orX87iSKMDdIiOkYPOUBldowqqIoIe0TN6RW/Wk/VivVujaWvKms3soz+wPr8AC3mizw==</latexit>

M = {S,A, P, r, �}
• State Space

• Action Space

• State Transition Probability

• Reward Function

• Discount Factor

Policy:
<latexit sha1_base64="YpaATdPxFdqipiehwNWV1KGXzGI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBalXkpSpHoRil48VrAf0Iay2W7apZtN3N0USujv8OJBEa/+GG/+GzdtDtr6YODx3gwz87yIM6Vt+9vKra1vbG7ltws7u3v7B8XDo5YKY0lok4Q8lB0PK8qZoE3NNKedSFIceJy2vfFd6rcnVCoWikc9jagb4KFgPiNYG8nF6PwG9SJWVheo0C+W7Io9B1olTkZKkKHRL371BiGJAyo04ViprmNH2k2w1IxwOiv0YkUjTMZ4SLuGChxQ5Sbzo2fozCgD5IfSlNBorv6eSHCg1DTwTGeA9Ugte6n4n9eNtX/tJkxEsaaCLBb5MUc6RGkCaMAkJZpPDcFEMnMrIiMsMdEmpzQEZ/nlVdKqVpxapfZwWarfZnHk4QROoQwOXEEd7qEBTSDwBM/wCm/WxHqx3q2PRWvOymaO4Q+szx/KvpAu</latexit>

a = ⇡(s) Deterministic Stochastic
<latexit sha1_base64="c3Ym9nRhXlWJ2yqSvi2JFZl5m7Q=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotSNyURqS6LblxWsA9oQplMpu3QeYSZiVBCceOvuHGhiFu/wp1/47TNQlsPXDiccy/33hMljGrjed/O0vLK6tp6YaO4ubW9s+vu7Te1TBUmDSyZVO0IacKoIA1DDSPtRBHEI0Za0fBm4rceiNJUinszSkjIUV/QHsXIWKnrHiJ4GmjKYZDQcoBjaWDAaQz1WdcteRVvCrhI/JyUQI561/0KYolTToTBDGnd8b3EhBlShmJGxsUg1SRBeIj6pGOpQJzoMJu+MIYnVolhTypbwsCp+nsiQ1zrEY9sJ0dmoOe9ifif10lN7yrMqEhSQwSeLeqlDBoJJ3nAmCqCDRtZgrCi9laIB0ghbGxqRRuCP//yImmeV/xqpXp3Uapd53EUwBE4BmXgg0tQA7egDhoAg0fwDF7Bm/PkvDjvzsesdcnJZw7AHzifPwn8lfE=</latexit>

a ⇠ ⇡(· | s)

<latexit sha1_base64="75q59Ir/CrJ8pZbnKm+P350/T4A=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi1WXVjcsK9gHToWTSTBuaSYbkjlCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmltfWNzq7xd2dnd2z+oHh51jEo1ZW2qhNK9kBgmuGRt4CBYL9GMxKFg3XByl/vdJ6YNV/IRpgkLYjKSPOKUgJX8fkxgTInIbmaDas2tu3PgVeIVpIYKtAbVr/5Q0TRmEqggxviem0CQEQ2cCjar9FPDEkInZMR8SyWJmQmyeeQZPrPKEEdK2ycBz9XfGxmJjZnGoZ3MI5plLxf/8/wUousg4zJJgUm6+ChKBQaF8/vxkGtGQUwtIVRzmxXTMdGEgm2pYkvwlk9eJZ2LuteoNx4ua83boo4yOkGn6Bx56Ao10T1qoTaiSKFn9IreHHBenHfnYzFacoqdY/QHzucPc+CRYg==</latexit>

A
<latexit sha1_base64="pX4wQAF6oIlVtoCcW8yajP2xk+4=">AAACI3icbVDLSsNAFJ3UV62vqEs3g0Wom5KIVOmqPhYuK9oHNKFMppN26GQSZiZCCf0XN/6KGxdKcePCf3HSBqytBwYO59zL3HO8iFGpLOvLyK2srq1v5DcLW9s7u3vm/kFThrHApIFDFoq2hyRhlJOGooqRdiQICjxGWt7wJvVbT0RIGvJHNYqIG6A+pz7FSGmpa1brsAqdAKkBRix5GENH0YDIX+kqlULo3BKmUGlu8rRrFq2yNQVcJnZGiiBDvWtOnF6I44BwhRmSsmNbkXITJBTFjIwLTixJhPAQ9UlHU470IW4yzTiGJ1rpQT8U+nEFp+r8RoICKUeBpyfTG+Wil4r/eZ1Y+ZduQnkUK8Lx7CM/ZlCHTguDPSoIVmykCcKC6lshHiCBsNK1FnQJ9mLkZdI8K9uVcuX+vFi7zurIgyNwDErABhegBu5AHTQABs/gFbyDD+PFeDMmxudsNGdkO4fgD4zvHy2YpAk=</latexit>

P : S ⇥A ! �(S)
<latexit sha1_base64="XDksXPEEYHI7XoZbQV0kryBEnuw=">AAACIXicbZDLSsNAFIYn9VbrrerSzWARXJVEpBZXVTcu66UXaEKZTCft0MmFmROlhL6KG1/FjQtFuhNfxkkbUFt/GPj5zjnMOb8bCa7AND+N3NLyyupafr2wsbm1vVPc3WuqMJaUNWgoQtl2iWKCB6wBHARrR5IR3xWs5Q6v0nrrgUnFw+AeRhFzfNIPuMcpAY26xao8x7ZPYECJSO7G2AbuM/WDLjSSvD8AImX4OOOum9yOu8WSWTanwovGykwJZap3ixO7F9LYZwFQQZTqWGYETkIkcCrYuGDHikWEDkmfdbQNiN7DSaYXjvGRJj3shVK/APCU/p5IiK/UyHd1Z7qhmq+l8L9aJwav6iQ8iGJgAZ195MUCQ4jTuHCPS0ZBjLQhVHK9K6YDIgkFHWpBh2DNn7xomidlq1Ku3JyWapdZHHl0gA7RMbLQGaqha1RHDUTRE3pBb+jdeDZejQ9jMmvNGdnMPvoj4+sbbuekWQ==</latexit>

r : S ⇥A ! R
<latexit sha1_base64="o0XEo125xT1SAM4tqvt6cUipruQ=">AAAB+nicbVDLSgNBEOz1GeMr0aOXwSB4kLArEj0GvXiMYB6wu4TZyWwyZGZ2mZlVwppP8eJBEa9+iTf/xsnjoIkFDUVVN91dUcqZNq777aysrq1vbBa2its7u3v7pfJBSyeZIrRJEp6oToQ15UzSpmGG006qKBYRp+1oeDPx2w9UaZbIezNKaShwX7KYEWys1C2Vgz4WAqOASeS7Z8gLu6WKW3WnQMvEm5MKzNHolr6CXkIyQaUhHGvte25qwhwrwwin42KQaZpiMsR96lsqsaA6zKenj9GJVXooTpQtadBU/T2RY6H1SES2U2Az0IveRPzP8zMTX4U5k2lmqCSzRXHGkUnQJAfUY4oSw0eWYKKYvRWRAVaYGJtW0YbgLb68TFrnVa9Wrd1dVOrX8zgKcATHcAoeXEIdbqEBTSDwCM/wCm/Ok/PivDsfs9YVZz5zCH/gfP4AEfiSlw==</latexit>

� 2 [0, 1]

<latexit sha1_base64="bJMahMp9ooFdVqU7kjATwLwCVr8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2gdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjzqRdA==</latexit>

S

Objective of Reinforcement Learning  
<latexit sha1_base64="MP601qVfRJ7RBIu+U94Tr4cwKkc="></latexit>

J(⇡) = E⇡

" 1X

t=0

�tr(st, at)

#
.

<latexit sha1_base64="q9r+7byo8py6foKPj8KUz+gVZcw=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSjEZtkViTZC0EasIpgHZNdwdzKbDJl9MDMrhiU/YOOv2FgoYmtv5984m6TQxAOXezjnXmbu8WLOpLKsbyO3sLi0vJJfLaytb2xuFbd3GjJKBKF1EvFItDyQlLOQ1hVTnLZiQSHwOG16g8vMb95TIVkU3qphTN0AeiHzGQGlpU7xoODE7M6RCgQ+xw6InhPAQyfV6ghfl3U7MgudYskyrTHwPLGnpISmqHWKX043IklAQ0U4SNm2rVi5KQjFCKejgpNIGgMZQI+2NQ0hoNJNx9eM8KFWutiPhK5Q4bH6eyOFQMph4OnJAFRfznqZ+J/XTpR/5qYsjBNFQzJ5yE84VhHOosFdJihRfKgJEMH0XzHpgwCidIBZCPbsyfOkcWzaFbNyc1KqXkzjyKM9tI/KyEanqIquUA3VEUGP6Bm9ojfjyXgx3o2PyWjOmO7soj8wPn8A9eeaOg==</latexit>

⇡? = argmax
⇡

J(⇡).

: expected total reward over trajectories generated by the policy
<latexit sha1_base64="qkGt8d5TQlx+p95z39Xb0zOjz/4=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiQi1WVRBJcV7AOaWCbTSTt0MgkzE6WE/ocbF4q49V/c+TdO0iy09cDA4Zx7uWeOH3OmtG1/W6WV1bX1jfJmZWt7Z3evun/QUVEiCW2TiEey52NFORO0rZnmtBdLikOf064/uc787iOVikXiXk9j6oV4JFjACNZGenBDrMe+n97MBm7MBtWaXbdzoGXiFKQGBVqD6pc7jEgSUqEJx0r1HTvWXoqlZoTTWcVNFI0xmeAR7RsqcEiVl+apZ+jEKEMURNI8oVGu/t5IcajUNPTNZJZSLXqZ+J/XT3Rw6aVMxImmgswPBQlHOkJZBWjIJCWaTw3BRDKTFZExlphoU1TFlOAsfnmZdM7qTqPeuDuvNa+KOspwBMdwCg5cQBNuoQVtICDhGV7hzXqyXqx362M+WrKKnUP4A+vzB7fykqw=</latexit>E⇡

or

Reinforcement Learning (RL)



5

<latexit sha1_base64="GYR246DIIjmVfsPyrjfivy7Zx9A="></latexit>

Q⇡(s, a) = E⇡

" 1X

t=0

�tr(st, at)

���� s0 = s, a0 = a

#
.

Action-Value Function:

Q(s,a) Action-Value function and V(s) Value function

Value Function:

è how good on average a state S is under policy π?

<latexit sha1_base64="W5KmO3QxcUUJt4I7rsBH4uWWP7U="></latexit>

V ⇡(s) = Ea⇠⇡(·|s)[Q
⇡(s, a) ]
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Bellman Optimality Equation for  Action-Value Function:
è Q*(s, a) can be iteratively computed

<latexit sha1_base64="dqYgfpOrrTBNC/2umIPbQjwsozQ="></latexit>

Q?(s, a) = r(s, a) + �
X

s0

P (s0 | s, a)max
a0

Q?(s0, a0).

Problems:
• curse of dimensionality 
• state transition probability is often unknown

(model free RL)

Solutions:
• Approximate Q-table with deep neural net.
• Use Q-learning or policy gradient algorithms

Q-iteration with tabular Q-function 

Q Table

!(#!, %!) !(#!, %") !(#!, %#) !(#!, %$)

!(#", %! ) !(#", %" ) !(#", %#) !(#", %$)

!(##, %!) !(##, %" ) !(##, %#) !(##, %$ )

!(#$, %!) !(#$, %") !(#$, %#) !(#$, %$)

#! #"

## #$

Grid World

!!
!"
!#
!$

"! "" "# "$

Actions

"!
"" "#

"$

<latexit sha1_base64="MDb5ymCRZtb/RJcXGc8WeRvF+Mw=">AAAB/nicbZDLSgNBEEVrfMb4GhVXbhqD4ELCjEh0GXTjMoJ5QDKEmk5P0qTnQXePEIaAv+LGhSJu/Q53/o2dZARNvNBwuFVFVV8/EVxpx/mylpZXVtfWCxvFza3tnV17b7+h4lRSVqexiGXLR8UEj1hdcy1YK5EMQ1+wpj+8mdSbD0wqHkf3epQwL8R+xANOURurax92gliiEESdkR9E0rVLTtmZiiyCm0MJctW69menF9M0ZJGmApVqu06ivQyl5lSwcbGTKpYgHWKftQ1GGDLlZdPzx+TEOD1ilpsXaTJ1f09kGCo1Cn3TGaIeqPnaxPyv1k51cOVlPEpSzSI6WxSkguiYTLIgPS4Z1WJkAKnk5lZCByiRapNY0YTgzn95ERrnZbdSrtxdlKrXeRwFOIJjOAUXLqEKt1CDOlDI4Ale4NV6tJ6tN+t91rpk5TMH8EfWxzfNiZTA</latexit>

8s, 8a
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• PPO uses an approximation of the Value function to “guide” its learning process
• PPO’s actor relies on “specialized clipping” in its objective for more stable learning
• Critic is trained by using supervised regression with L2 norm

<latexit sha1_base64="N0ygvN3OTHU01ADhFru3RQzACFo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSgyn1yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9KdUomOSzUi81PKFsTIe8a6miETf+dH7pjJxZZUDCWNtSSObq74kpjYyZRIHtjCiOzLKXif953RTDa38qVJIiV2yxKEwlwZhkb5OB0JyhnFhCmRb2VsJGVFOGNpwsBG/55VXSuqh6tWrt/rJSv8njKMIJnMI5eHAFdbiDBjSBQQjP8Apvzth5cd6dj0VrwclnjuEPnM8fFsWNFg==</latexit>s

Proximal Policy Optimization (PPO)
Actor Network with parameters #

<latexit sha1_base64="N0ygvN3OTHU01ADhFru3RQzACFo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSgyn1yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9KdUomOSzUi81PKFsTIe8a6miETf+dH7pjJxZZUDCWNtSSObq74kpjYyZRIHtjCiOzLKXif953RTDa38qVJIiV2yxKEwlwZhkb5OB0JyhnFhCmRb2VsJGVFOGNpwsBG/55VXSuqh6tWrt/rJSv8njKMIJnMI5eHAFdbiDBjSBQQjP8Apvzth5cd6dj0VrwclnjuEPnM8fFsWNFg==</latexit>s

Critic Network with parameters !

è
<latexit sha1_base64="oU247HIu6bWBp4oB/f1PlEkpeBA=">AAACDHicbVDLSgMxFM34rPVVdekmWIS6KTMi1Y1QdOOygn1Ap5Q7adqGJjNDckcspR/gxl9x40IRt36AO//GtJ2Fth4InJxzLsk9QSyFQdf9dpaWV1bX1jMb2c2t7Z3d3N5+zUSJZrzKIhnpRgCGSxHyKgqUvBFrDiqQvB4Mrid+/Z5rI6LwDocxbynohaIrGKCV2rk80Evqg+75Ch7aQP1YtH3sc4SCvSjRoebEptyiOwVdJF5K8iRFpZ378jsRSxQPkUkwpum5MbZGoFEwycdZPzE8BjaAHm9aGoLipjWaLjOmx1bp0G6k7QmRTtXfEyNQxgxVYJMKsG/mvYn4n9dMsHvRGokwTpCHbPZQN5EUIzpphnaE5gzl0BJgWti/UtYHDQxtf1lbgje/8iKpnRa9UrF0e5YvX6V1ZMghOSIF4pFzUiY3pEKqhJFH8kxeyZvz5Lw4787HLLrkpDMH5A+czx+H0ZoL</latexit>

a = argmax
a

⇡✓(a | s)
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DAG scheduling problem consists of 
scheduling nodes on " processors such that 
all the nodes can finish before a deadline #

Typical solution: list scheduling (i.e., work-
conserving algorithm based on priorities)

DRL applied to RT Resource Management:
DAG scheduling problem



9

Trivial Schedulability
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Trivial Schedulability
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Is this DAG task also schedulable 
on 2 processors?

Trivial Schedulability
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Is this DAG task also schedulable 
on 2 processors?

Trivial Schedulability
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Trivial Schedulability
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The policy will add edges to the original DAG until no edges can be added 
without violating deadline D or current DAG width reaches its lower bound

Edge Generation Scheduling (EGS)

• The goal of this work is to learn an EGS policy that can be effective at solving the 
following optimization problem: 
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Edge Generation Scheduling

To minimize number of cores needed by the DAG, we use following Reward function: 
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DRL with Proximal Policy Optimization (PPO)
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Evaluation Results

Acceptance ratio on eight processors:
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Example: DNN Pipelining on Hardware Accelerators*

DRL Agent

Performance Profiler 
(latency, throughput, etc.)
è Reward generation

Edge TPU Accelerator Pipeline

Deploy

DRL Training

Input: An original neural network Output: A partitioned neural network

*B Sun, B Zou, Y Hu, T Kloda, L Wang, T Abdelzaher, M 
Caccamo,  "SAPar: A Surrogate-Assisted DNN Partitioner for 
Efficient Inferences on Edge TPU Pipelines",  in EMSOFT, 2025.

Example of Future Research
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Conclusions

• RL is a framework for sequential decision-making in which an agent interacts with the
environment to maximize its expected cumulative reward. 

• Unlike imitation learning, RL does not depend on expert demonstrations. In fact, RL 
enables autonomous policy discovery through trial and error.

• We are exploring the potential of DRL applied to real-time resource management

è DRL does not guarantee globally optimal solutions but instead it produces learned heuristics

• DRL has some limitations too:

Ø It lacks formal guarantees (however, DAG RT constraints are enforced through “action masking”) 

Ø It demands problem-specific MDP design

Ø It can incur high training costs, especially when real hardware interaction is needed.


